DOI: 10.1002/eiic.200600895

The Active Intermediates of Non-Heme-Iron-Based Systems for Catalytic Alkene Epoxidation with H₂O₂/CH₃COOH

Eduard A. Duban, [a] Konstantin P. Bryliakov, [a] and Evgenii P. Talsi*[a]

Keywords: Oxidoiron(IV) complexes / Acylperoxido complexes / EPR spectroscopy / Paramagnetic NMR spectroscopy / Intermediates / Oxidation

Iron complexes with aminopyridine ligands [Fe^{II}(BPMEN)- $(CH_3CN)_2](ClO_4)_2$ (1) [BPMEN = N_1N' -dimethyl- N_1N' -bis(2pyridylmethyl)-1,2-diaminoethane] and [Fe^{II}(TPA)(CH₃- CN_2 (ClO₄)₂ (2) [TPA = tris(2-pyridylmethyl)amine] are rare examples of iron-based catalysts for selective olefin epoxidation with H₂O₂/CH₃COOH combination. Using ^{1,2}H NMR and EPR spectroscopy, it was shown that the active species of the catalytic systems 1/H₂O₂/CH₃COOH and 2/H₂O₂/ CH₃COOH are mononuclear iron(IV)-oxido complexes $[(BPMEN)Fe^{IV}=O(S)]^{2+}$ and $[(TPA)Fe^{IV}=O(S)]^{2+}$, respectively (S = solvent molecule). These intermediates are formed via decomposition of the corresponding acylperoxido complexes

 $[(L)Fe^{III}(O_3CCH_3)]^{2+}$ (L = BPMEN or TPA). The acylperoxido complex $[(BPMEN)Fe^{III}(O_3CCD_3)]^{2+}$ was identified in the catalytic system 1/H₂O₂/CD₃COOD by ²H NMR spectroscopy. The improved epoxidation activity and selectivity of the catalytic systems 1/H₂O₂/CH₃COOH and 2/H₂O₂/ CH_3COOH_1 , with respect to $1/H_2O_2$ and $2/H_2O_2$, is caused by the effective formation of intermediates [(L)Fe^{IV}=O(S)]²⁺ via decomposition of the acylperoxido complexes [(L)- $Fe^{III}(O_3CCH_3)]^{2+}$.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)

Introduction

Iron complexes with aminopyridine ligands are known to efficiently catalyze selective olefin oxidation using H₂O₂ or CH₃CO₃H as terminal oxidants.^[1-13] [Fe^{II}(BPMEN)- $(CH_3CN)_2|(ClO_4)_2$ (1) [BPMEN = N,N'-dimethyl-N,N'bis(2-pyridylmethyl)-1,2-diaminoethane] and [Fe^{II}(TPA)- $(CH_3CN)_2$ $(ClO_4)_2$ (2) [TPA = tris(2-pyridylmethyl)amine] (Figure 1) represent the catalysts investigated thus far in the most detail.[1-3,10] Interestingly, the epoxidation of olefins by H₂O₂ catalyzed by 1 and 2 was improved by the addition of acetic acid, [2] and the in situ formation of peroxyacetic acid was later inferred in these systems.[4] The iron(IV)-oxido species $[LFe^{IV}=O(S)]^{2+}$ (L = BPMEN or TPA, S = solvent molecule) are considered as possible reactive intermediates of the catalytic systems 1/H₂O₂/CH₃COOH and 2/ H₂O₂/CH₃COOH. This postulate was derived from nearly identical product distribution obtained for olefin oxidations catalyzed by 1 and 2 with CH₃CO₃H and H₂O₂/CH₃OOH as oxidants.^[12] However, whereas the [(TPA)Fe^{IV}=O(S)]²⁺ intermediate active towards cyclooctene was trapped in the catalytic system 2/CH₃CO₃H,^[14] such type of species have never been detected in 2/H₂O₂/CH₃COOH and 1/H₂O₂/

CH₃COOH combinations. Thus, the experimental proof is required for the proposed key role of an Fe^{IV}=O oxidant in 1/H₂O₂/CH₃COOH and 2/H₂O₂/CH₃COOH systems.

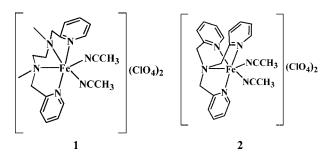


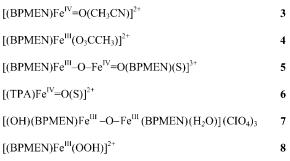
Figure 1. Structures of complexes 1 and 2.

For 1/H₂O₂ and 2/H₂O₂ catalytic systems, the nature of active intermediates is even less clear. The low-spin ferric hydroperoxo species [LFe^{III}(OOH)(S)]²⁺ were identified in $1/H_2O_2^{[6]}$ and $2/H_2O_2^{[15,16]}$ Later, it was proposed that [(TPA)Fe^{III}(OOH)(S)]²⁺ by itself is a sluggish oxidant but could be a precursor of more reactive species (e.g. [(TPA)- $Fe^{IV}=O(S)^{2+}$. [17] However, mononuclear [LFe^{IV}=O(S)]²⁺ intermediates have never been detected in 1/H₂O₂ and 2/ H₂O₂ systems.

In this work, we report ^{1,2}H NMR and EPR detection and reactivity studies of [LFe^{IV}=O(S)]²⁺ and other intermediates formed in the catalytic systems 1/CH₃CO₃H, 2/ CH₃CO₃H, 1/H₂O₂/CH₃COOH, 2/H₂O₂/CH₃COOH, and $1/H_2O_2$.

Fax: +7-383-3308056

E-mail: talsi@catalysis.ru



[[]a] Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russian Federation

Results and Discussion

Catalytic Systems 1/CH₃CO₃H and 1/H₂O₂/CH₃COOH

The ¹H NMR spectrum recorded 10 min after onset of the reaction of 1 with 2 equiv. of CH₃CO₃H at -50 °C in a 1:1 CD₂Cl₂/CD₃CN mixture displays broad peaks of Fe^{III}– O-Fe^{III} dimers and additional sharp peaks (marked by points) of the new complex 3 (Figure 2, a). Most of the ¹H NMR peaks of 3 possess negative ¹H NMR chemical shifts, whereas mononuclear high-spin ferrous complex 1 and dinuclear Fe^{III}-O-Fe^{III} species with BPMEN ligands exhibit mainly the ¹H NMR peaks with positive chemical shifts.^[6,18] Such unusual negative ¹H NMR chemical shifts were previously observed for X-ray characterized low-spin mononuclear complex [(N₄Py)Fe^{IV}=O]²⁺, where N₄Py is the pentadentate ligand N,N'-bis(2-pyridylmethyl)-N-bis(2pyridyl)methylamine.^[19] Thus, complex 3 could be assigned to a mononuclear Fe^{IV}=O complex. In agreement with this assumption, complex 3 could also be obtained upon reaction of 1 with 1 equiv. of iodosylbenzene at -50 °C in a 1:1 CD₂Cl₂/CD₃CN mixture (Figure 2, b). The reaction of a ferrous precursor with iodosylbenzene is the commonest method for the generation of Fe^{IV}=O species.^[14] By analogy with X-ray characterized complex [(TMC)Fe^{IV}=O-(CH₃CN)]²⁺ (TMS is tetradentate ligand tetramethylcyclam, cyclam = 1,4,8,11-tetraazacyclotetradecene),^[20] the following structure could be proposed for 3: [(BPMEN)-Fe^{IV}=O(CH₃CN)]²⁺. A molecule of solvent (CH₃CN) occupies the sixth coordination site of 3.

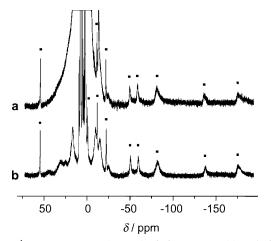


Figure 2. ¹H NMR spectra (-50 °C) of $1/\text{CH}_3\text{CO}_3\text{H}$ (a) and 1/PhIO (b) systems recorded 10 min after mixing the reagents at -50 °C in a 1:1 CD₂Cl₂/CD₃CN mixture ([1] = [PhIO] = 0.05 M, [CH₃CO₃H] = 0.1 M). Points denote peaks of 3.

The number of the ¹H NMR peaks of 3 corresponds to the number of chemically nonequivalent protons of the BPMEN ligand. ^[21] The intensities of the ¹H NMR peaks of 3 correspond to the conversion of up to 30% of 1 into 3. Complex 3 is stable in a 1:1 CD₂Cl₂/CD₃CN mixture at -50 °C and decays at higher temperatures (the half-life time $\tau_{1/2}$ is 15 min at -10 °C). After the addition of 5 equiv. of cyclohexene to the solution containing 3 at -50 °C, the latter disappears within several minutes. This decay is accompanied by the rise of the ¹H NMR peaks of the 1,2-epoxycyclohexane. Thus, complex 3 is the key intermediate of epoxidation by the catalytic system $1/CH_3CO_3H$.

The same complex **3** was observed by ¹H NMR upon addition of H_2O_2 into the $1/CH_3COOH$ system ([1] = $[H_2O_2] = [CH_3COOH] = 0.05 \text{ M}$, 1:1 CD_2Cl_2/CD_3CN mixture, -50 °C). The concentration of **3** was close to that for the $1/CH_3O_3H$ system ([1] = $[CH_3CO_3H] = 0.05 \text{ M}$, 1:1 CD_2Cl_2/CD_3CN mixture, -50 °C). Thus, mononuclear ironoxido complex $[(BPMEN)Fe^{IV}=O(S)]^{2+}$ (**3**) is the active species of cyclohexene epoxidation by the catalytic systems $1/CH_3CO_3H$ and $1/H_2O_2/CH_3COOH$.

Apparently, it is the ferric acylperoxido complex $[(BPMEN)Fe^{III}(O_3CCH_3)]^{2+}$ (4) that is the precursor of 3. We have undertaken the search for 4 by ²H NMR using deuterated peroxo acetic acid (CD₃CO₃H). The ²H NMR spectrum recorded 10 min after the addition of 1.5 equiv. of CD₃CO₃H to 1 in a 1:1 CH₂Cl₂/CH₃CN mixture at -50 °C exhibits a broad peak at $\delta = 102.7$ ppm (the half height width $\Delta v_{1/2} = 230 \text{ Hz}$) (Figure 3). The same peak was observed after the addition of 1 equiv. of H₂O₂ to the sample containing 1 and 1 equiv. of CD₃COOD in a 1:1 CH₂Cl₂/ CH₃CN mixture at -50 °C ([1] = 0.05 M). This peak disappeared upon warming ($\tau_{1/2} = 10 \text{ min at } -30 \text{ °C}$). For the high-spin complex (TPP)Fe^{III}-O-O-CD₂-CD₃ (TPP = dianion of tetra-p-tolylporphyrin), a CD₂ peak was observed at $\delta = 180$ ppm, and a CD₃- peak at 4 ppm.^[22] On the basis of these data, the resonance at $\delta = 102.7$ ppm could be assigned to the OOCCD3 or O3CCD3 moiety bound to highspin Fe^{III}. To rule out the assignment of the observed peak to the OOCCD3 moiety, CD3COOD was added to the solution containing 1 at -50 °C. In this case, no ²H NMR peaks near 100 ppm were observed. Thus, the ²H NMR resonance at $\delta = 102.7$ ppm belongs to the O₃CCD₃ moiety of the high-spin ferric acylperoxido complex 4. The maximum

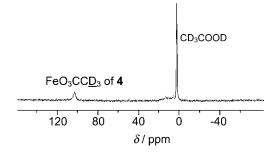


Figure 3. The 2H NMR spectrum (-50 °C) of the system 1/CD₃CO₃D recorded 10 min after mixing the reagents at -50 °C in a 1:1 CH₂Cl₂/CH₃CN mixture ([1] = 0.05 M, [CD₃CO₃H] = 0.075 M).

concentration of $\bf 4$ was about 10% of the initial concentration of $\bf 1$.

The high-spin mononuclear ferric complex 4 should display an EPR signal at g = 4.23. [23,24] EPR spectra recorded in various moments of time after onset of the reaction of 1 with 2 equiv. of CH₃CO₃H at -60 °C in a 2:1 CH₂Cl₂/CH₃CN mixture show: (1) a signal at g = 4.23 (peak-topeak width $\Delta H = 260$ G), (2) an axially anisotropic signal ($g_1 = g_2 = 2.42$, $g_3 = 2.67$), and (3) a very broad signal at g = 4.23 ($\Delta H = 1200$ G) (Figure 4, a and b). The signal at g = 4.23 ($\Delta H = 260$ G) was gone upon warming to room temperature, and another weaker and sharper signal ($\Delta H = 70$ G) with the same g-factor was observed. The latter signal persists after storing at room temperature for hours and thus belongs to a stable mononuclear high-spin ferric species. The broad signal near g = 2 disappeared upon warming (Figure 4, c).

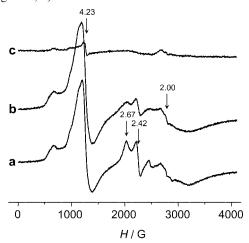


Figure 4. X-band EPR spectra (-196 °C) recorded 1 min (a) and 10 min (b) after mixing 1 and CH₃CO₃H at -60 °C in a 2:1 CH₂Cl₂/ CH₃CN mixture. Sample (b) after warming to room temperature (c). ([1] = 0.05 M, [CH₃CO₃H] = 0.1 M).

It is tempting to assign the observed signal at g = 4.23 (Figure 4, a and b) to acylperoxido complex 4. However, another high-spin ferric species (e.g., high-spin hydroxido complex [(BPMEN)Fe^{III}(OH)]²⁺) could have an EPR signal in the same range. At present, it is difficult to determine the contribution of 4 to the observed signal at g = 4.23. The origin of a very broad signal near g = 2 (Figure 4, a and b) is also unclear.

The axial spectrum ($g_1 = g_2 = 2.42$, $g_3 = 2.67$) (Figure 4, a and b) belongs to the very unstable complex 5 ($\tau_{1/2} = 10 \text{ min at } -60 \,^{\circ}\text{C}$). The same signal could be observed in the catalytic system $1/\text{H}_2\text{O}_2$ along with the rhombic spectra of the low-spin ferric hydroperoxido complexes [(BPMEN)-Fe^{III}(OOH)S]²⁺ (see below).

EPR spectra of the low-spin ferric complexes (heme and non-heme) show a rhombic pattern ($g_x \neq g_y \neq g_z$) with g-values in the range ca. 1–4 (one of the g-values is less than $g_e = 2.0024$)^[10,23–26] These spectra differ markedly from that of 5 ($g_1 = g_2 = 2.42$, $g_3 = 2.67$). The EPR spectra of highspin ferric complexes with TPA- and BPMEN-type ligands display an EPR signal at $g_{\rm eff} = 4.23$.^[10,23–26] Therefore, com-

plex 5 is not the low-spin, nor the high-spin ferric complex. EPR spectra of binuclear Fe^{III}Fe^{II} moieties reported for some enzymes (methane monooxygenase, ribonucleotide reductase, Rieske-type dioxygenase, etc) and model compounds exhibit resonances in the range $g_1 = 1.93-2.01$, g_2 = 1.85–1.92, g_3 = 1.64–1.80, [24,25] and again are very different from that of 5. Complexes with Fe^{III}-O-Fe^{III}, Fe^{IV}=O, and Fe^{IV}-O-Fe^{IV} fragments are EPR silent.[13,14,24,27] Thus, it is reasonable to assume that 5 is a binuclear Fe^{III}Fe^{IV} complex. Recently, Wieghardt et al. have identified iron species formed upon photooxidation of trans-[(cyclam)Fe(N₃)₂]ClO₄ in acetonitrile solution by Mössbauer and EPR spectroscopy. The major photolysis product in liquid solution at room temperature was nitridobridged binuclear (FeIII, FeIV) complex with localized antiferromagnetically coupled Fe^{III} (S = 3/2) and low-spin Fe^{IV} (S = 1) units, the total spin being S = 1/2.^[28] The EPR spectrum of this (μ-nitrido) diiron complex (g-values of 2.04, 2.06, and 2.20) resembles that of complex 5. Both the spectra display almost axial symmetry and for both spectra all the g-values are larger than ge. Thus, complex 5 can be tentatively assigned to a mixed-valence Fe^{III}Fe^{IV} complex. The formation of Fe^{III}-O-Fe^{III} binuclear complexes is highly characteristic for the catalytic systems studied. [18,29] Therefore, the existence of binuclear intermediates $[(BPMEN)Fe^{III}-O-Fe^{IV}=O(BPMEN)(S)]^{3+}$ (5) along with mononuclear species [(BPMEN)Fe^{IV}=O(S)]²⁺(3) seems to be rather probable. The attempts to obtain additional spectroscopic evidences in favor of the proposed structure of 5 were unsuccessful due to the low concentration of 5 with respect to the concentrations of the other iron species present in the sample.

Intermediate 5 ($\tau_{1/2} = 10 \text{ min at } -60 \text{ °C}$) is far less stable than 3 ($\tau_{1/2} = 15 \text{ min at } -10 \text{ °C}$). As was mentioned, in the presence of cyclohexene, the decay of 3 at -50 °C is accompanied by the rise of concentration of the 1,2-epoxycyclohexane. Thus, despite the fact that intermediate 5 could also react with cycloxehene (see below), intermediate 3 is the active species of cyclohexene epoxidation by the catalytic systems $1/\text{CH}_3\text{CO}_3\text{H}$ and $1/\text{H}_2\text{O}_2/\text{CH}_3\text{COOH}$.

Catalytic Systems 2/CH₃CO₃H and 2/H₂O₂/CH₃COOH

By analogy with BPMEN-based systems, it is natural to assume that the active species of $2/\text{CH}_3\text{CO}_3\text{H}$ and $2/\text{H}_2\text{O}_2/\text{CH}_3\text{COOH}$ systems is the oxidoiron(IV) complex [(TPA)-Fe^{IV}=O(S)]²⁺ (6). In full agreement with this assumption, peaks of 6 (marked by points) were observed in the ¹H NMR spectra of $2/\text{H}_2\text{O}_2/\text{CH}_3\text{COOH}$ and $2/\text{CH}_3\text{CO}_3\text{H}$ in 1:1 CD₂Cl₂/CD₃CN at -50 °C (Figure 5). The remaining paramagnetically shifted signals belong to binuclear Fe^{III}-O-Fe^{III} species.^[29] Complex 6 is unstable ($\tau_{1/2}$ = 10 min at -10 °C). The most characteristic and easily assignable peaks of 6 belong to β,β' -protons of the picolinic rings [1:1 CDCl₃/CD₂Cl₂, -50 °C, δ = 58.8 (2 H), 49.8 (1 H), -24.9 (2 H), and -28.7 (1 H)]. The ratio between the four observed peaks (2:1:2:1) corresponds to two equivalent and one

unique picolinic rings of a coordinated TPA ligand. The observed pattern of β,β' -protons of 6 resembles that for Xray characterized complex $[(N_4Py)Fe^{IV}=O]^{2+}$ $[\delta = 44.4 (2)]$ H), 30.05 (2 H), -11.2 (2 H), -17.8 (2 H)].^[19] The assignment of the other signals of 6 is more complicated and is still not completed, as in the case of [(N₄Py)Fe^{IV}=O]²⁺. Complex 6 is stable at -50 °C and rapidly (within several minutes) disappears at this temperature in the presence of 5 equiv. of cyclohexene. The decay of 6 was accompanied by the rise of the ¹H NMR peaks of 1,2-epoxycyclohexane. Fresh portions of CH₃CO₃H or H₂O₂/CH₃COOH restore the concentration of 6. Apparently, it is the oxidoiron intermediate $[(TPA)Fe^{IV}=O(S)]^{2+}$ (6) that is the active species of the catalytic systems 2/H₂O₂/CH₃COOH and 2/CH₃CO₃H. An intermediate similar to intermediate 5 in the BPMENbased system was not detected in the TPA-based analogue.

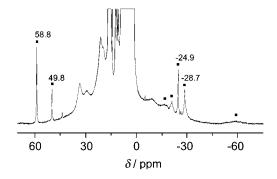


Figure 5. The ${}^{1}H$ NMR spectrum (-50 °C) of the $2/H_{2}O_{2}/$ CH₃COOH system recorded 10 min after addition of H₂O₂ to 2/ CH₃OOH in a 1:1 CD₂Cl₂/CD₃CN mixture at -50 °C ([2] = $[CH_3COOH] = 0.05 \text{ M}, [H_2O_2] = 0.1 \text{ M}$. Points denote peaks of 6.

Catalytic System 1/H₂O₂

The ¹H NMR spectrum of 1 in CD₃CN at high temperature corresponds to a paramagnetic high-spin ferrous complex. Complex 1 decreases its spin state with decreasing temperature and displays the ¹H NMR spectrum characteristic of diamagnetic low-spin ferrous species at -40 °C.[8,30] The addition of 2 equiv. of H₂O₂ to the 0.03 M solution of 1 in CD₃CN at 20 °C gives rise to immediate conversion of the major part of 1 into a new complex with a ¹H NMR spectrum very similar to that reported for binuclear complex [(OH)(BPMEN)Fe^{III}-O-Fe^{III}(BPMEN)(H₂O)](ClO₄)₃ (7).[18] Thus, the predominant iron-containing species in the 1/H₂O₂ system is μ-oxo diferric complex 7. To identify unstable intermediates, the reaction between 1 and H₂O₂ was studied at low temperatures.

Figure 6 shows the EPR spectrum recorded 1 min after onset of the reaction between 1 and 1.5 equiv. of H₂O₂ in a 2:1 CH₂Cl₂/CH₃CN mixture at -60 °C. It is seen that besides the characteristic signals of the low-spin ferric hydroperoxo intermediates [(BPMEN)Fe^{III}(OOH)(CH₃CN)]²⁺ (8-CH₃CN) $(g_1 = 2.218, g_2 = 2.178, g_3 = 1.967)$ and $[(BPMEN)Fe^{III}(OOH)(H_2O)]^{2+}$ (8-H₂O) ($g_1 = 2.195, g_2 = 2.195$)

2.128, $g_3 = 1.970$),^[6] the axially symmetric signal of complex 5 ($g_1 = g_2 = 2.42$ and $g_3 = 2.67$) is observed. In the presence of 8 equiv. of cyclohexene, the decay of 5 at -60 °C increases at least by a factor of 5, whereas the rate of 8-CH₃CN and 8-H₂O decomposition remains unchanged (Figure 7 and Figure 8). These data are in agreement with

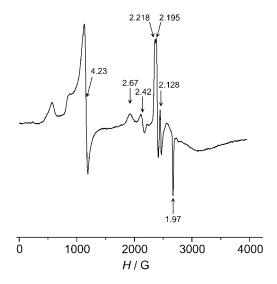


Figure 6. X-band EPR spectrum (-196 °C) recorded 1 min after mixing 1 and 1.5 equiv. of H₂O₂ at -60 °C in a 2:1 CH₂Cl₂/CH₃CN mixture. ([1] = 0.05 M).

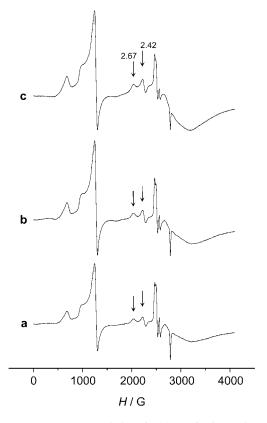


Figure 7. EPR spectra recorded 2 min (a), 5 min (b), and 7 min (c) after onset of reaction of 1 with 1.5 equiv. of H₂O₂ in a 2:1 CH₂Cl₂/ CH₃CN mixture at -60 °C.([1] = 0.05 M). Arrows denote signals of

855

our assumption that 5 contains the active Fe^{IV}=O moiety. The concentration of intermediates 5 and 8 does not exceed 5% of the concentration of 1.

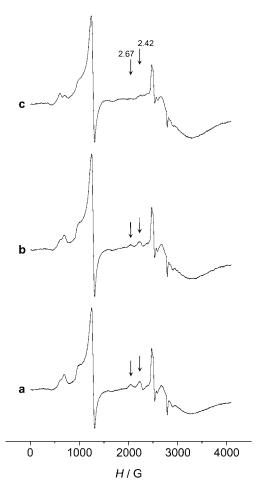


Figure 8. EPR spectra recorded 2 min (a), 3 min (b), and 6 min (c) after onset of reaction of 1 with 1.5 equiv. of H_2O_2 in a 2:1 CH_2Cl_2/CH_3CN mixture containing cyclohexene at -60 °C ([1] = 0.05 M, $[C_6H_{10}] = 0.4$ M). Arrows denote signals of 5.

In contrast to the 1/CH₃CO₃H and 1/H₂O₂/CH₃COOH catalytic systems, the mononuclear iron(IV) oxido intermediate 3 was not detected in the catalytic system 1/H₂O₂. The only observable intermediate sensitive to the presence of substrate is complex 5 with the proposed structure [(BPMEN)Fe^{III}-O-Fe^{IV}=O(BPMEN)(S)]³⁺. Thus, different intermediates operate in the catalytic systems 1/H₂O₂ and 1/H₂O₂/CH₃COOH. This result agrees with differing activities and selectivities of the catalytic systems 1/H₂O₂ and 1/ H₂O₂/CH₃COOH in epoxidation of olefins.^[2,4,12] However, the actual role of intermediate 5 in epoxidation with 1/H₂O₂ is far from being established. Very recently, it has been shown that binuclear iron(III)-BPMEN complexes are less active in epoxidation with H₂O₂ than mononuclear complex 1 under the same conditions.[31] This result argues against the involvement of a binuclear intermediate in the 1/H₂O₂ system. On the other hand, the diiron complex with dinucleating, covalently linked TPA derivatives confirms the high reactivity of oxo-bridged diiron(III) species in olefin

epoxidation.^[32] Further studies are needed to elucidate the active species of the 1/H₂O₂ and 2/H₂O₂ catalytic systems.

Fortunately, for the most active and selective epoxidizing systems $1/H_2O_2/CH_3COOH$ and $2/H_2O_2/CH_3COOH$, the situation is more definite. On the basis of the results of our study, the active species of these catalytic systems are mononuclear Fe^{IV} species $[(L)Fe^{IV}=O(S)]^{2+}$. The improved epoxidation activity and selectivity of the catalytic systems $1/H_2O_2/CH_3COOH$ and $2/H_2O_2/CH_3COOH$, with respect to $1/H_2O_2$ and $2/H_2O_2$, is caused by the effective formation of intermediates $[(L)Fe^{IV}=O(S)]^{2+}$ via decomposition of the acylperoxido complexes $[(L)Fe^{III}(O_3CCH_3)]^{2+}$.

Experimental Section

Acetonitrile, [D₃]acetonitrile, dichloromethane, [D₂]dichloromethane, [D₄]acetic acid, 2-picolyl chloride hydrochloride, and N,N'dimethyl-1,2-ethanediamine were purchased from Aldrich and used without additional purification. Hydrogen peroxide (95 %) was obtained by concentration of commercial 30% H₂O₂ under reduced pressure. The concentrated H₂O₂ diluted ten times by a 1:1 CH₂Cl₂/ CH₃CN mixture was used for the preparation of samples. CH₃CO₃H (or CD₃CO₃D) was prepared by mixing equivalent amounts of 95% H₂O₂ and CH₃CO₃H (or CD₃COOD) in the presence of 1% H₂SO₄, and stirring the mixture overnight. [(TPA)- $Fe^{II}(CH_3CN)_2](ClO_4)_2$ and $[(BPMEN)Fe^{II}(CH_3CN)_2](ClO_4)_2$ were synthesized following a method previously described^[3,24] and satisfactorily characterized by ¹H NMR spectroscopy. To start the reaction, 1.5-2 equiv. of CH₃CO₃H or H₂O₂ was added to 0.5 mL of a 0.05 M solution of 1 or 2 in CH₂Cl₂/CH₃CN or CH₂Cl₂/CH₃CN/ CH₃COOH mixtures at -60 to -50 °C directly in quartz EPR or glass NMR tubes (d = 5 mm). For kinetic EPR studies, solutions containing unstable intermediates were placed in a thermostat at an appropriate temperature directly in an EPR tube. To stop the reaction, the tube was immersed in liquid nitrogen, followed by registration of the EPR spectrum at -196 °C. For kinetic NMR studies, ¹H or ²H NMR spectra of intermediates were recorded at selected temperatures. If necessary, the appropriate amounts of cyclohexene were added to the reaction solutions. For evaluation of the concentration of 3 by ¹H NMR, the integral intensity of the N-CH₃ peak of 3 was compared with the integral intensity of the residual peak of CD₂HCN in CD₃CN. The concentration of residual CD₂HCN in CD₃CN was preliminarily determined by ¹H NMR spectroscopy. For this goal the specified amount of CHCl₃ was added to CD₃CN. For evaluation of the concentration of 4, the integral intensity of its CD₃CO₃ peak was compared with that of CD₃COOD.

EPR spectra (–196 °C) were recorded at 9.2–9.3 GHz with a Bruker ER-200D spectrometer. Measurements were made in a quartz Dewar vessel filled with liquid nitrogen. EPR signals near g=2 were quantified by double integration with copper(II) chloride as a standard at –196 °C. ^{1.2}H NMR spectra were recorded at 400.13 and 61.425 MHz in 5-mm glass sample tubes, on a Bruker Avance 400 MHz NMR spectrometer. The following operating conditions were used for ¹H NMR measurements: spectral width 125 kHz, spectrum accumulation frequency 10 Hz; number of scans 5000–10000; 45° pulse at 5 μs. The ¹H and ²H chemical shifts were referenced to the residual peak of the solvent (CHD_2CN , and CDH_2CN , $\delta=1.96$ ppm). The typical operating conditions used for ²H NMR measurements were as follows: sweep width 125 kHz; spectrum accumulation frequency 2.5 Hz; number of transients 5000–10000; 45° pulse at 10 μs.

Acknowledgments

We acknowledge the financial support from the Russian Foundation of Basic Research, grant 06–03–32214.

- [1] K. Chen, L. Que Jr, Chem. Commun. 1999, 1375–1376.
- [2] M. C. White, A. G. Doyle, E. N. Jacobsen, J. Am. Chem. Soc. 2001, 123, 7194–7195.
- [3] M. Costas, A. K. Tipton, K. Chen, D.-H. Jo, L. Que Jr, J. Am. Chem. Soc. 2001, 123, 6722–6723.
- [4] M. Fujita, L. Que Jr, Adv. Synth. Catal. 2004, 346, 190-194.
- [5] G. Dubois, A. Murphy, T. D. P. Stack, Org. Lett. 2003, 5, 2469– 2472.
- [6] E. A. Duban, K. P. Bryliakov, E. P. Talsi, *Mendeleev Commun.* 2005, 12–13.
- [7] J. Y. Ryu, J. Kim, M. Costas, K. Chen, W. Nam, L. Que Jr, Chem. Commun. 2002, 1288–1289.
- [8] K. Chen, M. Costas, J. Kim, A. K. Tipton, L. Que Jr, J. Am. Chem. Soc. 2002, 124, 3026–3035.
- [9] M. Fujita, M. Costas, L. Que Jr, J. Am. Chem. Soc. 2003, 125, 9912–9913.
- [10] M. Costas, M. P. Mehn, M. P. Jensen, L. Que Jr, Chem. Rev. 2004, 104, 939–986.
- [11] S. V. Kryatov, E. V. Rybak-Akimova, S. Schindler, Chem. Rev. 2005, 105, 2175–2226.
- [12] R. Mas-Ballesté, M. Fujita, C. Hemmila, L. Que Jr, J. Mol. Catal. A: Chem. 2006, 251, 45–50.
- [13] M. R. Bukowski, P. Comba, A. Lienske, C. Limberg, C. L. de Laorden, R. Mas-Ballesté, M. Merz, L. Que Jr, Angew. Chem. Int. Ed. 2006, 45, 3446–3449.
- [14] M. H. Lim, J.-U. Rohde, A. Stubna, M. R. Bukowski, M. Costas, R. Y. N. Ho, E. Münck, W. Nam, L. Que Jr, *Proc. Natl. Acad. Sci.* 2003, 100, 3665–3670.
- [15] C. Kim, K. Chen, J. Kim, L. Que Jr, J. Am. Chem. Soc. 1997, 119, 5964–5965.
- [16] M. V. Lobanova, K. P. Bryliakov, E. A. Duban, E. P. Talsi, Mendeleev Commun. 2003, 175–177.
- [17] M. J. Park, J. Lee, Y. Suh, J. Kim, W. Nam, J. Am. Chem. Soc. 2006, 128, 2630–2634.

- [18] S. Taktak, S. V. Kryatov, E. V. Rybak-Akimova, *Inorg. Chem.* 2004, 43, 7196–7209.
- [19] E. J. Klinker, J. Kajzer, W. W. Brennessel, N. L. Woodroom, C. J. Cramer, L. Que Jr, *Angew. Chem. Int. Ed.* **2005**, *44*, 3690– 3694
- [20] J.-U. Rohde, J.-H. In, M. H. Lim, W. W. Brennessel, M. R. Bukowski, A. Stubna, E. Münck, W. Nam, L. Que Jr, *Science* 2003, 229, 1037–1039.
- [21] ¹H NMR spectrum of **3** (1:1 CD₂Cl₂/CD₃CN mixture, -50 °C, δ values, ppm): -175.4 (s, 2 H, $\Delta\vartheta_{1/2}$ = 1500 Hz, CH*H*-CH*H*), -136.3 (s, 2 H, $\Delta\vartheta_{1/2}$ = 1100 Hz, CH*H*-N), -81.3 (s, 6 H, $\Delta\vartheta_{1/2}$ = 2100 Hz, CH₃), -58.9 (s, 2 H, $\Delta\vartheta_{1/2}$ = 740 Hz, C*H*H-C*H*H),-49.7 (s, 2 H, $\Delta\vartheta_{1/2}$ = 730 Hz, C*H*H-N), -22.0 (s, 2 H, $\Delta\vartheta_{1/2}$ = 240 Hz, picolinic H), -11.7 (s, 2 H, $\Delta\vartheta_{1/2}$ = 220 Hz, picolinic H), -0.81 (s, 2 H, $\Delta\vartheta_{1/2}$ = 230 Hz, picolinic H), 54 (s, 2 H, $\Delta\vartheta_{1/2}$ = 220 Hz, picolinic H).
- [22] R. D. Arasasingham, A. L. Balch, C. R. Cornman, L. Latos-Grazynski, J. Am. Chem. Soc. 1989, 111, 4357–4363.
- [23] M. Fontecave, S. Ménage, C. Duboc-Toia, Coord. Chem. Rev. 1998, 178–180, 1555–1572.
- [24] E. I. Solomon, T. C. Brunold, M. I. Davis, J. N. Kemsley, S.-K. Lee, N. Lehnert, F. Neese, A. J. Skulan, Y.-S. Yang, J. Zhou, *Chem. Rev.* 2000, 100, 235–349.
- [25] E. Y. Tshuva, S. J. Lippard, Chem. Rev. 2004, 104, 987–1012.
- [26] L. Duelund, R. Hazell, C. J. McKenzie, L. P. Nielsen, H. Toftlund, J. Chem. Soc., Dalton Trans. 2001, 152–156.
- [27] A. Ghosh, F. Tiago de Oliveira, T. Yano, T. Nishioka, E. S. Beach, I. Kinoshita, E. Münck, A. D. Ryabov, C. P. Horwitz, T. J. Collins, J. Am. Chem. Soc. 2005, 127, 2505–2513.
- [28] K. Meyer, E. Bill, B. Mienert, T. Weyhermüller, K. Wieghardt, J. Am. Chem. Soc. 1999, 121, 4859–4876.
- [29] Y. Dong, H. Fujii, M. P. Hendrich, R. A. Leising, G. Pan, C. R. Randall, E. C. Wilkinson, Y. Zang, L. Que Jr, B. G. Fox, K. Kauffmann, E. Münck, J. Am. Chem. Soc. 1995, 117, 2778–2792
- [30] K. P. Bryliakov, E. A. Duban, E. P. Talsi, Eur. J. Inorg. Chem. 2005, 72–76.
- [31] S. Taktak, S. V. Kryatov, T. E. Haas, E. V. Rybak-Akimova, J. Mol. Catal. A 2006, 259, 24–34.
- [32] M. Kodera, M. Itoh, K. Kano, T. Funabiki, M. Reglier, Angew. Chem. Int. Ed. 2005, 44, 7104–7106.

Received: September 25, 2006 Published Online: January 15, 2007